Sic03/FrameworkLocal/RTCore/ThreadLock/ThreadLock.cs

1026 lines
35 KiB
C#
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

using System;
using System.Collections.Generic;
using System.Diagnostics;
using System.Globalization;
using System.Linq;
using System.Text;
using System.Threading;
namespace MECF.Framework.RT.Core.ThreadLock
{
#region 线
/// <summary>
/// 线程的协调逻辑状态
/// </summary>
internal enum CoordinationStatus
{
/// <summary>
/// 所有项完成
/// </summary>
AllDone,
/// <summary>
/// 超时
/// </summary>
Timeout,
/// <summary>
/// 任务取消
/// </summary>
Cancel
}
/// <summary>
/// 一个线程协调逻辑类详细参考书籍《CLR Via C#》page:681
/// 这个类可惜没有报告进度的功能
/// </summary>
internal sealed class AsyncCoordinator
{
private int m_opCount = 1;
private int m_statusReported = 0;
private Action<CoordinationStatus> m_callback;
private System.Threading.Timer m_timer;
/// <summary>
/// 每次的操作任务开始前必须调用该方法
/// </summary>
/// <param name="opsToAdd"></param>
public void AboutToBegin(int opsToAdd = 1) => Interlocked.Add(ref m_opCount, opsToAdd);
/// <summary>
/// 在一次任务处理好操作之后,必须调用该方法
/// </summary>
public void JustEnded()
{
if (Interlocked.Decrement(ref m_opCount) == 0)
{
ReportStatus(CoordinationStatus.AllDone);
}
}
/// <summary>
/// 该方法必须在发起所有的操作之后调用
/// </summary>
/// <param name="callback">回调方法</param>
/// <param name="timeout">超时时间</param>
public void AllBegun(Action<CoordinationStatus> callback, int timeout = Timeout.Infinite)
{
m_callback = callback;
if (timeout != Timeout.Infinite)
{
m_timer = new System.Threading.Timer(TimeExpired, null, timeout, Timeout.Infinite);
}
JustEnded();//修正一开始设置的初始值
}
/// <summary>
/// 超时的方法
/// </summary>
/// <param name="o"></param>
private void TimeExpired(object o) => ReportStatus(CoordinationStatus.Timeout);
/// <summary>
/// 取消任务的执行
/// </summary>
public void Cancel() => ReportStatus(CoordinationStatus.Cancel);
/// <summary>
/// 生成一次报告
/// </summary>
/// <param name="status">报告的状态</param>
private void ReportStatus(CoordinationStatus status)
{
//只报告一次的限制
if (Interlocked.Exchange(ref m_statusReported, 1) == 0)
{
m_callback(status);
}
}
/// <summary>
/// 乐观的并发方法模型具体参照《CLR Via C#》page:686
/// </summary>
/// <param name="target">唯一的目标数据</param>
/// <param name="change">修改数据的算法</param>
/// <returns></returns>
public static int Maxinum(ref int target, Func<int, int> change)
{
int currentVal = target, startVal, desiredVal;
do
{
startVal = currentVal;//设置值
//以下为业务逻辑,允许实现非常复杂的设置
desiredVal = change(startVal);
currentVal = Interlocked.CompareExchange(ref target, desiredVal, startVal);
}
while (startVal != currentVal);//更改失败就强制更新
return desiredVal;
}
}
#endregion
#region
/// <summary>
/// 一个用于高性能,乐观并发模型控制操作的类,允许一个方法(隔离方法)的安全单次执行
/// </summary>
public sealed class HslAsyncCoordinator
{
/// <summary>
/// 实例化一个对象,需要传入隔离执行的方法
/// </summary>
/// <param name="operater">隔离执行的方法</param>
public HslAsyncCoordinator(Action operater)
{
action = operater;
}
/// <summary>
/// 操作状态0是未操作1是操作中
/// </summary>
private int OperaterStatus = 0;
/// <summary>
/// 需要操作的次数
/// </summary>
private long Target = 0;
/// <summary>
/// 启动线程池执行隔离方法
/// </summary>
public void StartOperaterInfomation()
{
Interlocked.Increment(ref Target);
if (Interlocked.CompareExchange(ref OperaterStatus, 1, 0) == 0)
{
//启动保存
ThreadPool.QueueUserWorkItem(new WaitCallback(ThreadPoolOperater), null);
}
}
private Action action = null;
private void ThreadPoolOperater(object obj)
{
long currentVal = Target, startVal;
long desiredVal = 0;
do
{
startVal = currentVal;//设置值
// 以下为业务逻辑,允许实现非常复杂的设置
action?.Invoke();
// 需要清零值的时候必须用下面的原子操作
currentVal = Interlocked.CompareExchange(ref Target, desiredVal, startVal);
}
while (startVal != currentVal);// 更改失败就强制更新
// 退出保存状态
Interlocked.Exchange(ref OperaterStatus, 0);
// 最终状态确认
if (Target != desiredVal) StartOperaterInfomation();
}
}
#endregion
#region
// 一个高性能的读写锁由《CLR Via C#》作者Jeffrey Richter提供
/// <summary>
/// 一个高性能的读写锁,支持写锁定,读灵活,读时写锁定,写时读锁定
/// </summary>
public sealed class HslReadWriteLock : IDisposable
{
#region Lock State Management
#if false
private struct BitField {
private int m_mask, m_1, m_startBit;
public BitField(int startBit, int numBits) {
m_startBit = startBit;
m_mask = unchecked((int)((1 << numBits) - 1) << startBit);
m_1 = unchecked((int)1 << startBit);
}
public void Increment(ref int value) { value += m_1; }
public void Decrement(ref int value) { value -= m_1; }
public void Decrement(ref int value, int amount) { value -= m_1 * amount; }
public int Get(int value) { return (value & m_mask) >> m_startBit; }
public int Set(int value, int fieldValue) { return (value & ~m_mask) | (fieldValue << m_startBit); }
}
private static BitField s_state = new BitField(0, 3);
private static BitField s_readersReading = new BitField(3, 9);
private static BitField s_readersWaiting = new BitField(12, 9);
private static BitField s_writersWaiting = new BitField(21, 9);
private static OneManyLockStates State(int value) { return (OneManyLockStates)s_state.Get(value); }
private static void State(ref int ls, OneManyLockStates newState) {
ls = s_state.Set(ls, (int)newState);
}
#endif
private enum OneManyLockStates
{
Free = 0x00000000,
OwnedByWriter = 0x00000001,
OwnedByReaders = 0x00000002,
OwnedByReadersAndWriterPending = 0x00000003,
ReservedForWriter = 0x00000004,
}
private const int c_lsStateStartBit = 0;
private const int c_lsReadersReadingStartBit = 3;
private const int c_lsReadersWaitingStartBit = 12;
private const int c_lsWritersWaitingStartBit = 21;
// Mask = unchecked((int) ((1 << numBits) - 1) << startBit);
private const int c_lsStateMask = unchecked((int)((1 << 3) - 1) << c_lsStateStartBit);
private const int c_lsReadersReadingMask = unchecked((int)((1 << 9) - 1) << c_lsReadersReadingStartBit);
private const int c_lsReadersWaitingMask = unchecked((int)((1 << 9) - 1) << c_lsReadersWaitingStartBit);
private const int c_lsWritersWaitingMask = unchecked((int)((1 << 9) - 1) << c_lsWritersWaitingStartBit);
private const int c_lsAnyWaitingMask = c_lsReadersWaitingMask | c_lsWritersWaitingMask;
// FirstBit = unchecked((int) 1 << startBit);
private const int c_ls1ReaderReading = unchecked((int)1 << c_lsReadersReadingStartBit);
private const int c_ls1ReaderWaiting = unchecked((int)1 << c_lsReadersWaitingStartBit);
private const int c_ls1WriterWaiting = unchecked((int)1 << c_lsWritersWaitingStartBit);
private static OneManyLockStates State(int ls) { return (OneManyLockStates)(ls & c_lsStateMask); }
private static void SetState(ref int ls, OneManyLockStates newState)
{
ls = (ls & ~c_lsStateMask) | ((int)newState);
}
private static int NumReadersReading(int ls) { return (ls & c_lsReadersReadingMask) >> c_lsReadersReadingStartBit; }
private static void AddReadersReading(ref int ls, int amount) { ls += (c_ls1ReaderReading * amount); }
private static int NumReadersWaiting(int ls) { return (ls & c_lsReadersWaitingMask) >> c_lsReadersWaitingStartBit; }
private static void AddReadersWaiting(ref int ls, int amount) { ls += (c_ls1ReaderWaiting * amount); }
private static int NumWritersWaiting(int ls) { return (ls & c_lsWritersWaitingMask) >> c_lsWritersWaitingStartBit; }
private static void AddWritersWaiting(ref int ls, int amount) { ls += (c_ls1WriterWaiting * amount); }
private static bool AnyWaiters( int ls ) { return (ls & c_lsAnyWaitingMask) != 0; }
private static string DebugState(int ls)
{
return string.Format(CultureInfo.InvariantCulture,
"State={0}, RR={1}, RW={2}, WW={3}", State(ls),
NumReadersReading(ls), NumReadersWaiting(ls), NumWritersWaiting(ls));
}
/// <summary>
/// 返回本对象的描述字符串
/// </summary>
/// <returns>对象的描述字符串</returns>
public override string ToString() { return DebugState(m_LockState); }
#endregion
#region State Fields
private int m_LockState = (int)OneManyLockStates.Free;
// Readers wait on this if a writer owns the lock
private Semaphore m_ReadersLock = new Semaphore(0, int.MaxValue);
// Writers wait on this if a reader owns the lock
private Semaphore m_WritersLock = new Semaphore(0, int.MaxValue);
#endregion
#region Construction
/// <summary>
/// 实例化一个读写锁的对象
/// </summary>
public HslReadWriteLock() : base() { }
#endregion
#region IDisposable Support
private bool disposedValue = false; // 要检测冗余调用
void Dispose(bool disposing)
{
if (!disposedValue)
{
if (disposing)
{
// TODO: 释放托管状态(托管对象)。
}
// TODO: 释放未托管的资源(未托管的对象)并在以下内容中替代终结器。
// TODO: 将大型字段设置为 null。
m_WritersLock.Close(); m_WritersLock = null;
m_ReadersLock.Close(); m_ReadersLock = null;
disposedValue = true;
}
}
// TODO: 仅当以上 Dispose(bool disposing) 拥有用于释放未托管资源的代码时才替代终结器。
// ~HslReadWriteLock() {
// // 请勿更改此代码。将清理代码放入以上 Dispose(bool disposing) 中。
// Dispose(false);
// }
// 添加此代码以正确实现可处置模式。
/// <summary>
/// 释放资源
/// </summary>
public void Dispose()
{
// 请勿更改此代码。将清理代码放入以上 Dispose(bool disposing) 中。
Dispose(true);
// TODO: 如果在以上内容中替代了终结器,则取消注释以下行。
// GC.SuppressFinalize(this);
}
#endregion
#region Writer members
private bool m_exclusive;
/// <summary>
/// 根据读写情况请求锁
/// </summary>
/// <param name="exclusive">True为写请求False为读请求</param>
public void Enter(bool exclusive)
{
if (exclusive)
{
while (WaitToWrite(ref m_LockState)) m_WritersLock.WaitOne();
}
else
{
while (WaitToRead(ref m_LockState)) m_ReadersLock.WaitOne();
}
m_exclusive = exclusive;
}
private static bool WaitToWrite(ref int target)
{
int start, current = target;
bool wait;
do
{
start = current;
int desired = start;
wait = false;
switch (State(desired))
{
case OneManyLockStates.Free: // If Free -> OBW, return
case OneManyLockStates.ReservedForWriter: // If RFW -> OBW, return
SetState(ref desired, OneManyLockStates.OwnedByWriter);
break;
case OneManyLockStates.OwnedByWriter: // If OBW -> WW++, wait & loop around
AddWritersWaiting(ref desired, 1);
wait = true;
break;
case OneManyLockStates.OwnedByReaders: // If OBR or OBRAWP -> OBRAWP, WW++, wait, loop around
case OneManyLockStates.OwnedByReadersAndWriterPending:
SetState(ref desired, OneManyLockStates.OwnedByReadersAndWriterPending);
AddWritersWaiting(ref desired, 1);
wait = true;
break;
default:
Debug.Assert(false, "Invalid Lock state");
break;
}
current = Interlocked.CompareExchange(ref target, desired, start);
} while (start != current);
return wait;
}
/// <summary>
/// 释放锁,将根据锁状态自动区分读写锁
/// </summary>
public void Leave()
{
int wakeup;
if (m_exclusive)
{
Debug.Assert((State(m_LockState) == OneManyLockStates.OwnedByWriter) && (NumReadersReading(m_LockState) == 0));
// Pre-condition: Lock's state must be OBW (not Free/OBR/OBRAWP/RFW)
// Post-condition: Lock's state must become Free or RFW (the lock is never passed)
// Phase 1: Release the lock
wakeup = DoneWriting(ref m_LockState);
}
else
{
var s = State(m_LockState);
Debug.Assert((State(m_LockState) == OneManyLockStates.OwnedByReaders) || (State(m_LockState) == OneManyLockStates.OwnedByReadersAndWriterPending));
// Pre-condition: Lock's state must be OBR/OBRAWP (not Free/OBW/RFW)
// Post-condition: Lock's state must become unchanged, Free or RFW (the lock is never passed)
// Phase 1: Release the lock
wakeup = DoneReading(ref m_LockState);
}
// Phase 2: Possibly wake waiters
if (wakeup == -1) m_WritersLock.Release();
else if (wakeup > 0) m_ReadersLock.Release(wakeup);
}
// Returns -1 to wake a writer, +# to wake # readers, or 0 to wake no one
private static int DoneWriting(ref int target)
{
int start, current = target;
int wakeup = 0;
do
{
int desired = (start = current);
// We do this test first because it is commonly true &
// we avoid the other tests improving performance
if (!AnyWaiters(desired))
{
SetState(ref desired, OneManyLockStates.Free);
wakeup = 0;
}
else if (NumWritersWaiting(desired) > 0)
{
SetState(ref desired, OneManyLockStates.ReservedForWriter);
AddWritersWaiting(ref desired, -1);
wakeup = -1;
}
else
{
wakeup = NumReadersWaiting(desired);
Debug.Assert(wakeup > 0);
SetState(ref desired, OneManyLockStates.OwnedByReaders);
AddReadersWaiting(ref desired, -wakeup);
// RW=0, RR=0 (incremented as readers enter)
}
current = Interlocked.CompareExchange(ref target, desired, start);
} while (start != current);
return wakeup;
}
#endregion
#region Reader members
private static bool WaitToRead(ref int target)
{
int start, current = target;
bool wait;
do
{
int desired = (start = current);
wait = false;
switch (State(desired))
{
case OneManyLockStates.Free: // If Free->OBR, RR=1, return
SetState(ref desired, OneManyLockStates.OwnedByReaders);
AddReadersReading(ref desired, 1);
break;
case OneManyLockStates.OwnedByReaders: // If OBR -> RR++, return
AddReadersReading(ref desired, 1);
break;
case OneManyLockStates.OwnedByWriter: // If OBW/OBRAWP/RFW -> RW++, wait, loop around
case OneManyLockStates.OwnedByReadersAndWriterPending:
case OneManyLockStates.ReservedForWriter:
AddReadersWaiting(ref desired, 1);
wait = true;
break;
default:
Debug.Assert(false, "Invalid Lock state");
break;
}
current = Interlocked.CompareExchange(ref target, desired, start);
} while (start != current);
return wait;
}
// Returns -1 to wake a writer, +# to wake # readers, or 0 to wake no one
private static int DoneReading(ref int target)
{
int start, current = target;
int wakeup;
do
{
int desired = (start = current);
AddReadersReading(ref desired, -1); // RR--
if (NumReadersReading(desired) > 0)
{
// RR>0, no state change & no threads to wake
wakeup = 0;
}
else if (!AnyWaiters(desired))
{
SetState(ref desired, OneManyLockStates.Free);
wakeup = 0;
}
else
{
Debug.Assert(NumWritersWaiting(desired) > 0);
SetState(ref desired, OneManyLockStates.ReservedForWriter);
AddWritersWaiting(ref desired, -1);
wakeup = -1; // Wake 1 writer
}
current = Interlocked.CompareExchange(ref target, desired, start);
} while (start != current);
return wakeup;
}
#endregion
}
#endregion
#region
/// <summary>
/// 一个简单的混合线程同步锁,采用了基元用户加基元内核同步构造实现
/// </summary>
/// <example>
/// 以下演示常用的锁的使用方式,还包含了如何优雅的处理异常锁
/// <code lang="cs" source="HslCommunication_Net45.Test\Documentation\Samples\Core\ThreadLock.cs" region="SimpleHybirdLockExample1" title="SimpleHybirdLock示例" />
/// </example>
public sealed class SimpleHybirdLock : IDisposable
{
#region IDisposable Support
private bool disposedValue = false; // 要检测冗余调用
void Dispose(bool disposing)
{
if (!disposedValue)
{
if (disposing)
{
// TODO: 释放托管状态(托管对象)。
}
// TODO: 释放未托管的资源(未托管的对象)并在以下内容中替代终结器。
// TODO: 将大型字段设置为 null。
m_waiterLock.Close();
disposedValue = true;
}
}
// TODO: 仅当以上 Dispose(bool disposing) 拥有用于释放未托管资源的代码时才替代终结器。
// ~SimpleHybirdLock() {
// // 请勿更改此代码。将清理代码放入以上 Dispose(bool disposing) 中。
// Dispose(false);
// }
// 添加此代码以正确实现可处置模式。
/// <summary>
/// 释放资源
/// </summary>
public void Dispose()
{
// 请勿更改此代码。将清理代码放入以上 Dispose(bool disposing) 中。
Dispose(true);
// TODO: 如果在以上内容中替代了终结器,则取消注释以下行。
// GC.SuppressFinalize(this);
}
#endregion
/// <summary>
/// 基元用户模式构造同步锁
/// </summary>
private int m_waiters = 0;
/// <summary>
/// 基元内核模式构造同步锁
/// </summary>
private AutoResetEvent m_waiterLock = new AutoResetEvent(false);
/// <summary>
/// 获取锁
/// </summary>
public void Enter()
{
if (Interlocked.Increment(ref m_waiters) == 1) return;//用户锁可以使用的时候,直接返回,第一次调用时发生
//当发生锁竞争时,使用内核同步构造锁
m_waiterLock.WaitOne();
}
/// <summary>
/// 离开锁
/// </summary>
public void Leave()
{
if (Interlocked.Decrement(ref m_waiters) == 0) return;//没有可用的锁的时候
m_waiterLock.Set();
}
/// <summary>
/// 获取当前锁是否在等待当中
/// </summary>
public bool IsWaitting => m_waiters != 0;
}
#endregion
#region 线
/*******************************************************************************
*
* 创建日期2017年7月6日 08:30:56
*
*
*******************************************************************************/
/// <summary>
/// 一个用于多线程并发处理数据的模型类,适用于处理数据量非常庞大的情况
/// </summary>
/// <typeparam name="T">等待处理的数据类型</typeparam>
public sealed class SoftMultiTask<T>
{
/// <summary>
/// 实例化一个数据处理对象
/// </summary>
/// <param name="dataList">数据处理列表</param>
/// <param name="operater">数据操作方法,应该是相对耗时的任务</param>
/// <param name="threadCount">需要使用的线程数</param>
public SoftMultiTask(T[] dataList, Func<T, bool> operater, int threadCount = 10)
{
m_dataList = dataList ?? throw new ArgumentNullException("dataList");
m_operater = operater ?? throw new ArgumentNullException("operater");
if (threadCount < 1) throw new ArgumentException( "threadCount can not less than 1", "threadCount");
m_threadCount = threadCount;
//增加任务处理
Interlocked.Add(ref m_opCount, dataList.Length);
//增加线程处理
Interlocked.Add(ref m_opThreadCount, threadCount);
}
/// <summary>
/// 操作总数,判定操作是否完成
/// </summary>
private int m_opCount = 0;
/// <summary>
/// 判断是否所有的线程是否处理完成
/// </summary>
private int m_opThreadCount = 1;
/// <summary>
/// 准备启动的处理数据的线程数量
/// </summary>
private int m_threadCount = 10;
/// <summary>
/// 指示多线程处理是否在运行中,防止冗余调用
/// </summary>
private int m_runStatus = 0;
/// <summary>
/// 列表数据
/// </summary>
private T[] m_dataList = null;
/// <summary>
/// 需要操作的方法
/// </summary>
private Func<T, bool> m_operater = null;
/// <summary>
/// 一个双参数委托
/// </summary>
/// <param name="item"></param>
/// <param name="ex"></param>
public delegate void MultiInfo(T item, Exception ex);
/// <summary>
/// 用于报告进度的委托当finish等于count时任务完成
/// </summary>
/// <param name="finish">已完成操作数量</param>
/// <param name="count">总数量</param>
/// <param name="success">成功数量</param>
/// <param name="failed">失败数量</param>
public delegate void MultiInfoTwo(int finish, int count, int success, int failed);
/// <summary>
/// 异常发生时事件
/// </summary>
public event MultiInfo OnExceptionOccur;
/// <summary>
/// 报告处理进度时发生
/// </summary>
public event MultiInfoTwo OnReportProgress;
/// <summary>
/// 已处理完成数量,无论是否异常
/// </summary>
private int m_finishCount = 0;
/// <summary>
/// 处理完成并实现操作数量
/// </summary>
private int m_successCount = 0;
/// <summary>
/// 处理过程中异常数量
/// </summary>
private int m_failedCount = 0;
/// <summary>
/// 用于触发事件的混合线程锁
/// </summary>
private SimpleHybirdLock HybirdLock = new SimpleHybirdLock();
/// <summary>
/// 指示处理状态是否为暂停状态
/// </summary>
private bool m_isRunningStop = false;
/// <summary>
/// 指示系统是否需要强制退出
/// </summary>
private bool m_isQuit = false;
/// <summary>
/// 在发生错误的时候是否强制退出后续的操作
/// </summary>
private bool m_isQuitAfterException = false;
#region Start Stop Method
/// <summary>
/// 启动多线程进行数据处理
/// </summary>
public void StartOperater()
{
if (Interlocked.CompareExchange(ref m_runStatus, 0, 1) == 0)
{
for (int i = 0; i < m_threadCount; i++)
{
Thread thread = new Thread(new ThreadStart(ThreadBackground));
thread.IsBackground = true;
thread.Start();
}
JustEnded();
}
}
/// <summary>
/// 暂停当前的操作
/// </summary>
public void StopOperater()
{
if (m_runStatus == 1)
{
m_isRunningStop = true;
}
}
/// <summary>
/// 恢复暂停的操作
/// </summary>
public void ResumeOperater()
{
m_isRunningStop = false;
}
/// <summary>
/// 直接手动强制结束操作
/// </summary>
public void EndedOperater()
{
if (m_runStatus == 1)
{
m_isQuit = true;
}
}
/// <summary>
/// 在发生错误的时候是否强制退出后续的操作
/// </summary>
public bool IsQuitAfterException
{
get
{
return m_isQuitAfterException;
}
set
{
m_isQuitAfterException = value;
}
}
#endregion
private void ThreadBackground()
{
while (true)
{
// 检测是否处于暂停的状态
while (m_isRunningStop)
{
;
}
// 提取处理的任务
int index = Interlocked.Decrement(ref m_opCount);
if (index < 0)
{
// 任务完成
break;
}
else
{
T item = m_dataList[index];
bool result = false;
bool isException = false;
try
{
if (!m_isQuit) result = m_operater(item);
}
catch (Exception ex)
{
isException = true;
// 此处必须吞噬所有异常
OnExceptionOccur?.Invoke(item, ex);
// 是否需要退出处理
if (m_isQuitAfterException) EndedOperater();
}
finally
{
// 保证了报告进度时数据的正确性
HybirdLock.Enter();
if (result) m_successCount++;
if (isException) m_failedCount++;
m_finishCount++;
OnReportProgress?.Invoke(m_finishCount, m_dataList.Length, m_successCount, m_failedCount);
HybirdLock.Leave();
}
}
}
JustEnded();
}
private void JustEnded()
{
if (Interlocked.Decrement(ref m_opThreadCount) == 0)
{
// 数据初始化
m_finishCount = 0;
m_failedCount = 0;
m_successCount = 0;
Interlocked.Exchange(ref m_opCount, m_dataList.Length);
Interlocked.Exchange(ref m_opThreadCount, m_threadCount + 1);
// 状态复位
Interlocked.Exchange(ref m_runStatus, 0);
m_isRunningStop = false;
m_isQuit = false;
}
}
}
#endregion
#region
#if !NET35
/// <summary>
/// 一个双检锁的示例,适合一些占内存的静态数据对象,获取的时候才实例化真正的对象
/// </summary>
internal sealed class Singleton
{
private static object m_lock = new object();
private static Singleton SValue = null;
public Singleton()
{
}
public static Singleton GetSingleton()
{
if (SValue != null) return SValue;
Monitor.Enter(m_lock);
if (SValue == null)
{
Singleton temp = new Singleton();
Volatile.Write(ref SValue, temp);
//上述编译不通过,简单的使用下述过程
SValue = new Singleton();
}
Monitor.Exit(m_lock);
return SValue;
}
}
#endif
#endregion
#region
#if !NET35
/// <summary>
/// 一个高级的混合线程同步锁,采用了基元用户加基元内核同步构造实现,并包含了自旋和线程所有权
/// </summary>
internal sealed class AdvancedHybirdLock : IDisposable
{
#region IDisposable Support
private bool disposedValue = false; // 要检测冗余调用
void Dispose( bool disposing )
{
if (!disposedValue)
{
if (disposing)
{
// TODO: 释放托管状态(托管对象)。
}
// TODO: 释放未托管的资源(未托管的对象)并在以下内容中替代终结器。
// TODO: 将大型字段设置为 null。
m_waiterLock.Close( );
disposedValue = true;
}
}
// TODO: 仅当以上 Dispose(bool disposing) 拥有用于释放未托管资源的代码时才替代终结器。
// ~SimpleHybirdLock() {
// // 请勿更改此代码。将清理代码放入以上 Dispose(bool disposing) 中。
// Dispose(false);
// }
// 添加此代码以正确实现可处置模式。
/// <summary>
/// 释放资源
/// </summary>
public void Dispose( )
{
// 请勿更改此代码。将清理代码放入以上 Dispose(bool disposing) 中。
Dispose( true );
// TODO: 如果在以上内容中替代了终结器,则取消注释以下行。
// GC.SuppressFinalize(this);
}
#endregion
/// <summary>
/// 基元用户模式构造同步锁
/// </summary>
private int m_waiters = 0;
/// <summary>
/// 基元内核模式构造同步锁
/// </summary>
private AutoResetEvent m_waiterLock = new AutoResetEvent( false );
/// <summary>
/// 控制自旋的一个字段
/// </summary>
//private int m_spincount = 4000;
/// <summary>
/// 指出哪个线程拥有锁
/// </summary>
private int m_owningThreadId = 0;
/// <summary>
/// 指示锁拥有了多少次
/// </summary>
private int m_recursion = 0;
/// <summary>
/// 获取锁
/// </summary>
public void Enter( )
{
int threadId = Thread.CurrentThread.ManagedThreadId;
if (threadId == m_owningThreadId)
{
m_recursion++;
return;//如果调用线程已经拥有锁,就返回
}
//SpinWait spinwait
if (Interlocked.Increment( ref m_waiters ) == 1) return;//用户锁可以使用的时候,直接返回,第一次调用时发生
//当发生锁竞争时,使用内核同步构造锁
m_waiterLock.WaitOne( );
}
/// <summary>
/// 离开锁
/// </summary>
public void Leave( )
{
if (Interlocked.Decrement( ref m_waiters ) == 0) return;//没有可用的锁的时候
m_waiterLock.Set( );
}
}
#endif
#endregion
}